2,585 research outputs found

    Corner Junction as a Probe of Helical Edge States

    Full text link
    We propose and analyze inter-edge tunneling in a quantum spin Hall corner junction as a means to probe the helical nature of the edge states. We show that electron-electron interactions in the one-dimensional helical edge states result in Luttinger parameters for spin and charge that are intertwined, and thus rather different than those for a quantum wire with spin rotation invariance. Consequently, we find that the four-terminal conductance in a corner junction has a distinctive form that could be used as evidence for the helical nature of the edge states.Comment: 4+ pages, 3 figure

    The unwarped, resolved, deformed conifold: fivebranes and the baryonic branch of the Klebanov-Strassler theory

    Get PDF
    We study a gravity solution corresponding to fivebranes wrapped on the S2S^2 of the resolved conifold. By changing a parameter the solution continuously interpolates between the deformed conifold with flux and the resolved conifold with branes. Therefore, it displays a geometric transition, purely in the supergravity context. The solution is a simple example of torsional geometry and may be thought of as a non-K\"ahler analog of the conifold. By U-duality transformations we can add D3 brane charge and recover the solution in the form originally derived by Butti et al. This describes the baryonic branch of the Klebanov-Strassler theory. Far along the baryonic branch the field theory gives rise to a fuzzy two-sphere. This corresponds to the D5 branes wrapping the two-sphere of the resolved conifold in the gravity solution.Comment: 41 pages, 7 figure

    Dom Pedro II daytime sleepiness

    Full text link

    Evolutionary and pulsational properties of white dwarf stars

    Get PDF
    Abridged. White dwarf stars are the final evolutionary stage of the vast majority of stars, including our Sun. The study of white dwarfs has potential applications to different fields of astrophysics. In particular, they can be used as independent reliable cosmic clocks, and can also provide valuable information about the fundamental parameters of a wide variety of stellar populations, like our Galaxy and open and globular clusters. In addition, the high densities and temperatures characterizing white dwarfs allow to use these stars as cosmic laboratories for studying physical processes under extreme conditions that cannot be achieved in terrestrial laboratories. They can be used to constrain fundamental properties of elementary particles such as axions and neutrinos, and to study problems related to the variation of fundamental constants. In this work, we review the essentials of the physics of white dwarf stars. Special emphasis is placed on the physical processes that lead to the formation of white dwarfs as well as on the different energy sources and processes responsible for chemical abundance changes that occur along their evolution. Moreover, in the course of their lives, white dwarfs cross different pulsational instability strips. The existence of these instability strips provides astronomers with an unique opportunity to peer into their internal structure that would otherwise remain hidden from observers. We will show that this allows to measure with unprecedented precision the stellar masses and to infer their envelope thicknesses, to probe the core chemical stratification, and to detect rotation rates and magnetic fields. Consequently, in this work, we also review the pulsational properties of white dwarfs and the most recent applications of white dwarf asteroseismology.Comment: 85 pages, 28 figures. To be published in The Astronomy and Astrophysics Revie

    Using “Omics” and Integrated Multi-Omics Approaches to Guide Probiotic Selection to Mitigate Chytridiomycosis and Other Emerging Infectious Diseases

    Get PDF
    Emerging infectious diseases in wildlife are responsible for massive population declines. In amphibians, chytridiomycosis caused by Batrachochytrium dendrobatidis, Bd, has severely affected many amphibian populations and species around the world. One promising management strategy is probiotic bioaugmentation of antifungal bacteria on amphibian skin. In vivo experimental trials using bioaugmentation strategies have had mixed results, and therefore a more informed strategy is needed to select successful probiotic candidates. Metagenomic, transcriptomic, and metabolomic methods, colloquially called “omics,” are approaches that can better inform probiotic selection and optimize selection protocols. The integration of multiple omic data using bioinformatic and statistical tools and in silico models that link bacterial community structure with bacterial defensive function can allow the identification of species involved in pathogen inhibition. We recommend using 16S rRNA gene amplicon sequencing and methods such as indicator species analysis, the Kolmogorov–Smirnov Measure, and co-occurrence networks to identify bacteria that are associated with pathogen resistance in field surveys and experimental trials. In addition to 16S amplicon sequencing, we recommend approaches that give insight into symbiont function such as shotgun metagenomics, metatranscriptomics, or metabolomics to maximize the probability of finding effective probiotic candidates, which can then be isolated in culture and tested in persistence and clinical trials. An effective mitigation strategy to ameliorate chytridiomycosis and other emerging infectious diseases is necessary; the advancement of omic methods and the integration of multiple omic data provide a promising avenue toward conservation of imperiled species

    Moduli Stabilization and Inflationary Cosmology with Poly-Instantons in Type IIB Orientifolds

    Full text link
    Equipped with concrete examples of Type IIB orientifolds featuring poly-instanton corrections to the superpotential, the effects on moduli stabilization and inflationary cosmology are analyzed. Working in the framework of the LARGE volume scenario, the Kaehler modulus related to the size of the four-cycle supporting the poly-instanton contributes sub-dominantly to the scalar potential. It is shown that this Kaehler modulus gets stabilized and, by displacing it from its minimum, can play the role of an inflaton. Subsequent cosmological implications are discussed and compared to experimental data.Comment: 38 pages, 7 figures, Reference added, Typo fixed, Published versio

    Oxidation and metal-insertion in molybdenite surfaces: evaluation of charge-transfer mechanisms and dynamics

    Get PDF
    Molybdenum disulfide (MoS2), a layered transition-metal dichalcogenide, has been of special importance to the research community of geochemistry, materials and environmental chemistry, and geotechnical engineering. Understanding the oxidation behavior and charge-transfer mechanisms in MoS2 is important to gain better insight into the degradation of this mineral in the environment. In addition, understanding the insertion of metals into molybdenite and evaluation of charge-transfer mechanism and dynamics is important to utilize these minerals in technological applications. Furthermore, a detailed investigation of thermal oxidation behavior and metal-insertion will provide a basis to further explore and model the mechanism of adsorption of metal ions onto geomedia

    Interactions and potential implications of Plasmodium falciparum-hookworm coinfection in different age groups in south-central CĂ´te d'Ivoire

    Get PDF
    BACKGROUND: Given the widespread distribution of Plasmodium and helminth infections, and similarities of ecological requirements for disease transmission, coinfection is a common phenomenon in sub-Saharan Africa and elsewhere in the tropics. Interactions of Plasmodium falciparum and soil-transmitted helminths, including immunological responses and clinical outcomes of the host, need further scientific inquiry. Understanding the complex interactions between these parasitic infections is of public health relevance considering that control measures targeting malaria and helminthiases are going to scale.METHODOLOGY: A cross-sectional survey was carried out in April 2010 in infants, young school-aged children, and young non-pregnant women in south-central CĂ´te d'Ivoire. Stool, urine, and blood samples were collected and subjected to standardized, quality-controlled methods. Soil-transmitted helminth infections were identified and quantified in stool. Finger-prick blood samples were used to determine Plasmodium spp. infection, parasitemia, and hemoglobin concentrations. Iron, vitamin A, riboflavin, and inflammation status were measured in venous blood samples.PRINCIPAL FINDINGS: Multivariate regression analysis revealed specific association between infection and demographic, socioeconomic, host inflammatory and nutritional factors. Non-pregnant women infected with P. falciparum had significantly lower odds of hookworm infection, whilst a significant positive association was found between both parasitic infections in 6- to 8-year-old children. Coinfected children had lower odds of anemia and iron deficiency than their counterparts infected with P. falciparum alone.CONCLUSIONS/SIGNIFICANCE: Our findings suggest that interaction between P. falciparum and light-intensity hookworm infections vary with age and, in school-aged children, may benefit the host through preventing iron deficiency anemia. This observation warrants additional investigation to elucidate the mechanisms and consequences of coinfections, as this information could have important implications when implementing integrated control measures against malaria and helminthiases
    • …
    corecore